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Linking Internal Dose to Health Outcomes  
CDC Evaluation of Mercury in Blood

“…
 

blood Hg levels in young children and women of 
childbearing age usually are below levels of 
concern. However, approximately 6% of 
childbearing-aged women had levels at or above a 
reference dose, an estimated level assumed to be 
without appreciable harm (>5.8 µg/L).”

--

 

CDC MMWR (NHANES 1999-2002)



Types of Information Needed to Link 
Internal Dose to Health Outcomes

•
 

Relationship to internal dose at health 
outcome in human studies
–

 

Lead in blood 
–

 

Methylmercury

 

in hair or blood

•
 

Relationship to internal dose at health 
outcome in animal studies
–

 

Direct measurement (PFOA in blood)
–

 

Pharmacokinetic (PK) modeling 
(in experimental animal)

•
 

Relationship to external dose at health 
outcome in animal or human studies
–

 

Most common situation
–

 

Need to link internal dose to external dose



Linking Internal Dose to Health Outcome 
The Big Problem is Lack of Toxicity Data
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Relationship of human biomonitoring 
to animal toxicity data
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Alternative Approaches for Linking  
Biomonitoring Data to Health Outcomes

•
 

Animal Dosimetry: Compare blood concentration in 
population with blood concentration at NOAEL/LOAEL in 
animal to obtain Margin of Exposure (MOE)
–

 

Requires: measurement of blood concentrations in toxicity 
studies or availability of PK model/data in animal to predict blood 
concentrations from external dose

–

 

Issue: how to determine adequacy of MOE 
–

 

Complication: may also require data on relationship of human 
biomarker (e.g., urinary metabolite) to blood concentration

New toxicity studies that fail to characterize internal dose
should no longer be accepted by journals or regulatory agencies



•
 

Forward Dosimetry: Compare biomonitoring 
data with predicted biomarker at toxicity value 
(RfD, MCL, etc.)
–

 

Requires: human PK model
–

 

Complication: dealing with multiple-route exposures
–

 

Issue: Ignores temporal relationship of exposures and 
biomarker sampling

–

 

Appropriate use: initial screen

Alternative Approaches for Linking 
Biomonitoring Data to Health Outcomes



Challenge for Interpreting Biomonitoring Data 
Variable Relationship of Exposures and Sampling
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Time-Course Simulations of 
Chloroform Blood Concentrations
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•
 

Reverse Dosimetry: Estimate external exposure in 
population from biomonitoring data and compare with 
toxicity value (RfD, MCL, etc.)
–

 

Requires: human PK model to describe relationship of 
biomarker to external dose  

–

 

Complication: may also require information on the nature 
(sources, frequency, duration, etc.) of potential exposures

–

 

Issue: dealing with uncertainty and variability in human 
exposures and pharmacokinetics

–

 

Appropriate Use: for chemicals of concern

Alternative Approaches for Linking 
Biomonitoring Data to Health Outcomes



Reconstructing Exposure with a PBPK Model: 
An Example with Methylmercury

•
 
Accidental poisoning episode
–

 
Iraq –

 
1972

•
 

Seed grain, treated with methylmercury 
fungicide, inadvertently used to prepare bread

•
 

Exposures continued over 1-
 

to 3-month period
•

 
Symptoms (late walking, late talking, 
neurological performance) observed in children 
of asymptomatic mothers exposed during 
pregnancy
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to grain contaminated with methylmercury
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Linking Internal Dose to Health Outcome:



BUT: Exposure Reconstruction is an 
“Ill-Posed Problem” 

(Many possible solutions)

Requires populationRequires population--level, probabilistic approachlevel, probabilistic approach
(Sohn

 

et al., 2004)

Comparison of Reconstructed Exposure 
Conditions with Actual Exposure 

Conditions

Comparison of PBPK Predicted 
Blood Concentrations with 

Experimental Data



Illustration of a Monte Carlo Analysis for the Time Course of Blood 
Concentrations from Household Exposures
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Solution: Probabilistic Reverse Dosimetry 
(Tan et al., 2006, 2007)



Linking Biomonitoring Data to External Dose 
Using Probabilistic Reverse Dosimetry

•
 

Role of PBPK 
–

 

Correct integration of exposure routes
•

 

pre-systemic clearance
•

 

flow-limited metabolism
–

 

Determine relationship of biomarker of internal 
exposure to target tissue dose for health effect

 
(e.g., amount metabolized in the liver)

•
 

Role of Monte Carlo Analysis
–

 

Reconstruct distribution of likely exposures across 
the population, not just average or worst-case

–

 

Consider variability and uncertainty in exposure and 
sampling
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Predicted Distribution of 
Chloroform Levels at 8:30 am
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Comparison of Measured Distribution of Blood 
Concentrations of Chloroform (from NHANES III) 
with PBPK/MC Predictions Based on Measured 

Distribution of Tap Water Concentrations of 
Chloroform (from TEAM)

Measured distributions of chloroform concentrations in blood 
(pg/mL) 

Percentile 5% 10% 25% 50% 75% 90% 95%

NHANES III data -- -- -- 23 41 77 127

Predicted distributions of chloroform concentrations in blood 
(pg/mL)

Assuming chloroform concentration in household air is independent 
of chloroform concentration in tap water

Blood (pg/mL) 3.3 4.8 9.3 19 42 79 135

Assuming chloroform concentration in household air = 0.0179 × 
chloroform concentration in tap water

Blood (pg/mL) 1.1 1.7 5.9 17 28 54 95
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Exposure Conversion Factor 
Distribution

Percentile 5% 10% 25% 50% 75% 90% 95% 

ECF (μg/L in water per 
pg/mL in blood)  4.52 4.11 3.42 2.65 1.73 0.877 0.506 

The distribution of exposure concentrations that could 
yield a unit blood concentration of chloroform:

e.g., If Mr. X has a blood concentration of 0.5 pg/mL, 
the concentration of chloroform in his water has a 
median estimate of 2.65×0.5 = 1.33 μg/L, but could 
range from 0.25 to 2.26 μg/L with 90% confidence. 



Predicted Distribution of Exposures to Chloroform in 
the Population Reported in NHANES III (mg/kg/day) 
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Approaches for describing the health 
implications of an estimated 

distribution of exposure
Assume that the estimated 95th percentile of the 
population exposure distribution is 0.0094 mg/kg/day

Margin of Exposure

Cancer: LED10

 

= 23 mg/kg/day
MOE = 23/0.0094 = 2460

Non-cancer: NOAEL = 12.86 mg/kg/day
MOE = 12.98/0.0094 = 1375

Comparison with RfD

RfD

 

= 0.01 mg/kg/day
< 5% of the population is above RfD



Model Simulations based on Partition Coefficients 
and Metabolic Constants Estimated using QSAR*

Published:
Vmaxc

 

= 10.0
Km = 1.5

QSAR:
Vmaxc=64.7

Km = 1.0

* Beliveau, M; Lipscomb, J; Tardif, R; Krishnan, K. Chem Res Toxicol. 2005, 18, 475-485. 

TrichloroethyleneTrichloroethylene



Monte Carlo Analysis with QSAR-Estimated Partition 
Coefficients and Kinetic Parameters (Liao et al. 2007)
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Linking Human Biomonitoring Data to Exposure 
Problems Vary with the Nature of the Chemical

•
 

Volatiles 
–

 

Complex household exposures
–

 

Rapid clearance
•

 

Blood levels highly sensitive to transient exposures

•
 

Intermediate persistence compounds
–

 

Interpretation depends on rate of clearance
•

 

Need to consider timing of exposures vs. sampling
–

 

May need to deal with multiple metabolites
•

 
Highly persistent compounds
–

 

Slow approach to steady state
–

 

Apparent clearance confounded by changes in body 
weight, fat content 
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Complications in the interpretation of 
biomonitoring data on non-persistent chemicals:

Timing of Exposure vs. Sampling



Complications in the interpretation of 
biomonitoring data on persistent chemicals:

 Age-
 

and composition-dependent kinetics

(Clewell et al., 2004)

Transplacental

 
exposure to maternal 
stores of TCDD

Dilution of TCDD 
stores by the rapid 
growth of neonate

Continuous exposure

Different fractional 
volume of fat between 
male and female



Complication in the interpretation of 
biomonitoring data on persistent chemicals:

 Lactation Transfer

(Gentry et al., 2003)
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Reconstructing a Perinatal Exposure:
Iraqi woman exposed during lactation 

to grain contaminated with methylmercury
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Pregnancy Lactation

parturition
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(Byczkowski

 

& Lipscomb, 2001) 

Mother Infant



Linking biomarkers to exposure and health outcome 
Problems vary with the nature of the biomarker

•
 

Parent chemical / active metabolite in blood 
–

 
Often a good surrogate for target tissue dose

–
 

Directly comparable to animal blood levels at 
NOAEL/LOAEL

–
 

Use to estimate exposure requires PK information
•

 
Inactive metabolite in Blood 
–

 
Use requires PK information

–
 

Not directly comparable to animal blood levels
•

 
Parent chemical or metabolite in urine
–

 
More easily related to exposure (uptake) rather than 
internal (target tissue) dose 

–
 

Use of metabolite for exposure reconstruction 
requires information on fractional yield 



Summary

•
 

Reverse dosimetry
–

 
Probabilistic dose reconstruction at the 
population level

–
 

Links biomarkers of internal dose to likely 
external exposures

–
 

Useful in absence of direct link between 
biomarker and health outcomes

–
 

Critically dependent on population exposure 
characterization
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